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Computations and Experiments for a Multiple Normal
Shock/Boundary-Layer Interaction
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Results from a numerical investigation of a Mach 1.61 multiple normal shock wave/turbulent boundary-layer
interaction are compared to wall static pressure and laser Doppler velocimeter measurements. The computations
used the explicit, time-dependent, second-order accurate MacCormack scheme to solve the mass-averaged
Navier-Stokes equations. Turbulence was modeled by means of the Baldwin-Lomax algebraic model and the
Wilcox-Rubesin two-equation model. The computation with the Wilcox-Rubesin model was able to capture the
major features of the normal shock train and accurately predicted the flow reacceleration mechanisms which
occur between shocks. However, this computation failed to accurately predict the level of flow separation under
the first shock. The Baldwin-Lomax computation displayed a more limited ability to capture the features of this
shock train flow.

Nomenclature
A+ = constant in Baldwin-Lomax model
Ccl = Clauser constant
Ccp = constant in Baldwin-Lomax model
Cueb ~ constant in Baldwin-Lomax model
Fkieb(y) - Klebanoff intermittency function
H = stagnation enthalpy
h = static enthalpy
/ = Jacobian of the coordinate transformation
k = turbulence kinetic energy
P = static pressure
Pr = Prandtl number
R = gas constant
Re = Reynolds number
T = static temperature
t = time
u = streamwise velocity component
v = transverse velocity component
x = streamwise direction in physical space
y = transverse direction in physical space
p* = constant in the Wilcox-Rubesin model
£ =, vorticity
77 = streamwise coordinate in computational space
K = von Karman's constant
fji = viscosity
f = transverse coordinate in computational space
p = density
a = normal stress
a* = constant in the Wilcox-Rubsin model
T = shear stress
o) = specific turbulence dissipation
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Subscripts
e
I
t
u

0

edge of the boundary layer
laminar
turbulent
undisturbed location at the start of the pressure
rise
stagnation location

Superscripts
I = laminar
t = turbulent

Introduction

W ITH the renewed interest in supersonic and hypersonic
air breathing propulsion, the ability to compute flow-

fields with highly confined shock wave/turbulent boundary-
layer interactions is increasingly important. Such flows com-
monly occur in ramjet and scram jet inlets as well as in other
devices such as supersonic ejectors and supersonic diffusers.
The level of flow confinement, as described by the ratio of
the undisturbed boundary-layer thickness to the duct half
height, 8Jh, is known to exert a strong influence on the in-
teraction.1"3 This article focuses on the highly confined mul-
tiple normal shock wave/turbulent boundary-layer interac-
tion, or normal shock train, in a nearly constant area,
rectangular duct. Numerical simulations of the normal shock
train were performed using the explicit MacCormack scheme4

to integrate the time-dependent, mass-averaged Navier-Stokes
equations along with the two-equation Wilcox-Rubesin5 model
of turbulence and the algebraic Baldwin-Lomax6 turbulence
model. This approach is typical of those currently being used
for scram jet engine analysis as discussed by White et al.7
Comparisons to detailed wall static pressure and velocity
measurements in a normal shock train8'9 are used to evaluate
the accuracy of the numerical predictions. To the authors'
knowledge, the results presented here are the first reported
computations of a normal shock train and the only detailed com-
parison of such computations to LDV measurements.10 Sub-
sequent computations of shock train flows have appeared in
recent years, reflecting the renewed interest in this topic,11'13

although these recent computations have not generally fo-
cused on the detailed mechanisms of the shock/boundary-
layer interactions.
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Numerous researchers have applied numerical techniques
for solving the mass-averaged Navier-Stokes equations to both
unconfined and confined shock wave/turbulent boundary-layer
interactions. The work cited here is not intended to be a
comprehensive list of the related work; only some of the most
closely related work is discussed. The first reported compu-
tation of a bifurcated shock pattern at the interaction of a
normal shock with a turbulent boundary layer is given by Liou
et al.14 These computations accurately captured the shock
location and lambda structure in two diverging ducts with area
ratios of 1.52 and 2.37. Using a similar formulation, Om et
al.1 present numerical and experimental results for a normal
shock wave/turbulent boundary-layer interaction in a constant
area circular duct. The confinement levels were sufficiently
low that only a single normal shock was observed. The com-
putations captured the bifurcated shock structure and the
supersonic tongue following the bifurcation. They employed
the Wilcox-Rubesin turbulence model which has been found
to perform well in these types of flows.15 Other researchers
have proven the ability of shock-capturing techniques em-
ploying some form of MacCormack's finite-difference method4

to compute single terminal normal shocks and reflected oblique
shocks in supersonic inlet flows.16"20 Based on these previous
results, the formulation used in this research is reasonable.

Formulation
The supersonic diffuser simulation, version 1 (SUDS1)

computer code used in this work is based on the NASCRIN
code developed by Kumar.17 The major differences are that
a reference plane characteristic-type outflow boundary con-
dition, wall function boundary conditions, and the two-equa-
tion Wilcox-Rubesin turbulence model have been incorpo-
rated into SUDS1. The governing equations for the mean
flow are the same as those used by Kumar,16'17 i.e., the con-
servation form of the two-dimensional, planar, mass-aver-
aged, time-dependent Navier-Stokes equations. A coordinate
transformation, from the (x, y) physical space to the (£, TJ)
computational space, is applied such that the equations re-
main in strong conservation form. The resulting equations are

dU dM dN_ =

dt + d£ + dj] ~

where the vectors £7, M, and N are

(1)

U = J

M =

P
pu
pv

IpH - P.

pu

(2)

puu + yT
pvii + yr

pHu - Pu + y^uv* qx) - qy)
(3)

N =

with

puv
pvv

pHv - Pv - )V

pv
*<rx
^rxy

x + qx)
uxf)

qy)
(4)

v = (-yfu + x€v)

(5)

(6)

The Jacobian of the transformation is given as / = x^y^ -
x^y^ and the metrics of the transformation are defined as y^
= &/, *„ = -£yj, y% = -7]XJ, 3UdX€ = J]yJ.

The total stress tensor is defined by r/; = r/y + rjy, with
the laminar stresses given by

(7)

and the turbulent stresses obtained from

a^
dx.

duk

* dx,. (8)

The total heat flux is also made up of a laminar and turbulent
contribution

(9)

(10)

q* = ~ VP^ + ~frj ~dx

/V j
Pr, PrJ dy

The laminar viscosity ̂  is obtained from the Sutherland vis-
cosity law. The laminar and turbulent Prandtl numbers for
air are taken as Prl = 0.72 and Prt = 0.90, respectively. In
the energy equation, the dependent variable is written as pH
- P, and is physically interpreted as the total internal energy
per unit volume. One additional relation, beyond the tur-
bulence model for /*,„ is required to close this set of equations.
This is taken as the ideal gas law P = pRT.

The turbulent viscosity is modeled by fjit = pVtLn where
Vt and Lt are characteristic velocity and length scales of the
turbulent flow. The two turbulence models employed in this
investigation, one due to Baldwin and Lomax6 and the other
to Wilcox and Rubesin,5 are used to compute the turbulent
viscosity. The Baldwin-Lomax model has the advantages of
easy implementation and efficient execution and has been
used successfully for flows with small separations. The two-
equation models are generally better than algebraic models
for shock/boundary-layer interactions, but they still have dif-
ficulty predicting the mean flow features without adjusting
the parameters of the model.

The widely used Baldwin-Lomax model6 is a two-layer,
algebraic, isotropic eddy viscosity turbulence model. The tur-
bulent viscosity is calculated using separate formulations in
each of two distinct layers, the inner layer close to a solid
wall, and the outer layer away from the wall. A smooth tran-
sition between the two formulations is enforced as follows:

_ J V
- ](

^V

) inner 3^ — .V crossover
} v < v/ outer /crossover ^ J

Here, y is the normal distance from the wall, and the crossover
point is the closest location to the wall at which the outer and
inner turbulent viscosities are equal. In the inner region, the
Prandtl-van Driest formulation is used

Winner = (12)

where the turbulent length scale is Lt = KyD, the turbulent
velocity scale is Lt\£\, K is von Karman's constant, and |£| is
the magnitude of the vorticity

du
dx

(13)

D is the van Driest damping factor, D = [1 - exp(-y+/
+ +A+)], and_y+ =

,
. The outer turbulent viscosity is
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calculated from

Or)outer = C/Qp

s

Fkleb(y) = [1 + 5.5(Ckleby/ymax)«] (15)

The wake function is calculated from Fwake = yma*Fmax,
where ymax is the y location of the peak in the function F(y)
= y \£ \D and FmaK = F(ymax). The turbulent length scale in
the outer region is proportional to ymax, and the turbulent
velocity scale is proportional to Fmax. Thus, the distribution
of vorticity in the outer region is used to establish these outer
scales. Baldwin and Lomax6 noticed in their original paper
that the function F(y) can develop multiple peaks in the vi-
cinity of a shock wave/boundary-layer interaction. If the wrong
peak is selected, the function Fwake will be incorrectly eval-
uated. Visbal and Knight21 investigated this effect in more
detail. Their results indicated that two main peaks develop
in the separation region of a shock wave/boundary-layer in-
teraction. Selection of the inner peak causes artificially low
values of Fwake, while selection of the outer peak physically
gave more reasonable results, leading them to recommend
use of the outer peak. They also noted that near the separation
point, where the wall shear stress goes to zero, the van Driest
damping function unrealistically vanishes, causing low values
of the computed turbulent viscosity. The use of the local shear
stress, instead of the wall shear stress, avoided this problem.
Visbal and Knight's21 work also indicated that the constants
Ccp and CMeb exhibited a Mach number dependence. A value
of Ccp = 2.08 was recommended for a Mach 3.0, nearly adi-
abatic flat-pilate boundary layer, but no specific recommen-
dation concerning Ckleb in a compressible flow was made. The
original values of the model constants were used in the current
study6: A+ =26 , Ccp = 1.6, Ckleb = 0.3, K = 0.4, Ccl =
0.0168. Also, the outer peak of the function F(y) was se-
lected.21 Once fjit is calculated, the turbulent stress tensor r-y
is obtained from the constitutive relation [Eq. (8)], with the
kinetic energy term, pk, set to zero.

The Wilcox-Rubesin turbulence model5 is a two-equation,
eddy viscosity model. In this work, the quantity k is taken as
thejwo-dimensional turbulence kinetic energy, i.e., A: = (u'2
+ v'2)/2. The specific turbulence dissipation, defined as the
rate of dissipation of turbulence kinetic energy per unit of
turbulence kinetic energy, is related to the dissipation of tur-
bulence kinetic energy, by

o) = (elp*k) (16)

where /3*
from

is a constant. The turbulent viscosity is calculated

Ht = py*(k/o)) (17)

where k and o) are obtained from the turbulence model equa-
tions for pk and pu>2

dt

(18)

df

po>3 - — (19)

The turbulent length scale is Lt = Vfc/w. Five terms appear
in each of the turbulence model equations for pk and pa)2.
From left to right, these terms are the time rate of change
followed by the convection, production, viscous dissipation,
and viscous diffusion terms. A viscous damping term y* is
included in the expression for the turbulent viscosity and is
given by

(20)

To allow a different level of damping in the po)2 equation,
a second damping term y is defined by

yy* = yjl - (21)

These viscous damping terms were required in the model
to correctly simulate the near wall region where molecular
viscosity dominates. The Reynolds number of turbulence is
expressed as Ret = (pVfcL,)/^,. The original model closure
coefficients5 are: /3 = &, /3* = ife, o- = cr* = 5, y^ = f, A
= n, Rk =1 , and RM = 2.0. Viegas and Horstman15 found
that calculations with the original value of yx = f underpre-
dicted the wall shear stress in a flat-plate equilibrium bound-
ary layer by 27%, and recommended that a value of yx =
0.90 be used instead. However, Liou et al.14 found that using
the original value of %, = f yielded separation regions at the
foot of a bifurcated shock which were in better agreement
with experimental data. Liou et al.14 also recommended that
the closure coefficients appearing in the viscous dissipation
terms of the model equations be set to unity, cr = cr* = 1.0,
to give better agreement to experimental results for pressure
•distributions and shock locations in several calculations of the
bifurcated terminal shock in a ramjet-type diffuser. Since the
choice of model constants appears to be somewhat problem-
dependent, the constants used in this investigation are the
original model constants as given by Wilcox and Rubesin,5
and listed above.

This set of model equations, when solved in conjunction
with the mean flow equations, gives ju, and k. In Wilcox and
Rubesin's5 original work, terms were added to the constitutive
relation [Eq. (8)] to allow for nonaligned stress and strain.
These terms, intended as a correction to the isotropic model
for anisotropic effects, have been found to cause numerical
difficulties at times,15 especially in calculations of shock wave/
boundary-layer interaction flows, and have therefore not been
included in the current formulation.

Numerical Procedure and Boundary Conditions
The set of governing equations given above was solved using

the original explicit, time-dependent, second-order accurate,
predictor-corrector, finite-difference method of MacCor-
mack.4 This method has the advantages of being easily im-
plemented and highly vectorizable. A fourth-order numerical
damping option is also included in the code to avoid exces-
sively large numerical oscillations in the computed results near
the shocks.22 The Wilcox-Rubesin turbulence model equa-
tions also tended to go unbounded near the shocks. Proce-
dures similar to those of Coakley and Viegas23 were used to
maintain the stability of the solution in these regions.

Appropriate boundary conditions were imposed at the edges
of the computational domain. The incoming flow was super-
sonic except in the very near wall boundary layer. Therefore,
the governing equations are either hyperbolic or parabolic
everywhere at the inflow boundary. Accordingly, the primi-
tive variables u, v, r, F, k, and o> are held fixed at specified
incoming values. At the symmetry boundary, the symmetric
quantities u, T, P, k, and a) are obtained from a one-point
extrapolation, while the antisymmetric quantity v is set to
zero. At the outflow boundary, the turbulence variables k
and a) are extrapolated at both supersonic and subsonic points.
At supersonic outflow points, w, v, P, and T are extrapolated
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as well. At subsonic outflow points, a nonreflective reference
plane characteristics scheme is used to compute the values of
«, v, and T at the exit plane. The value of P is specified. This
subsonic outflow boundary condition is physically consistent
with the method of characteristics analysis which shows that
only one characteristic extends outside the computational do-
main. Adiabatic, no-slip, solid wall boundary conditions are
enforced at the remaining boundary. With the Baldwin-Lo-
max model, the mean flow equations are integrated to the
wall with the first grid point off the wall placed in the viscous
sublayer. The u and v velocity components are set to zero,
and the wall temperature is obtained from a zeroth-order
extrapolation which is equivalent to enforcing a zero normal
temperature gradient. When using the Wilcox-Rubesin model,
the wall function boundary conditions of Viegas et al.,24 de-
signed for separated compressible flows, were employed. Fur-
ther details of the formulation are given in the report by
Carroll and Button.25

Results
The computations were performed for the planar Mach 1.61

normal-shock train shown in Fig. 1. Detailed experimental
data are available for this case, including wall static pressure
measurements, surface oil flow visualizations, spark schlieren
photographs, and two-component laser Doppler velocimeter
measurements.8'9 The operating conditions were as follows:
stagnation pressure P0 = 206 ±0 .7 kPa; stagnation temper-
ature T0 = 295 ± 2 K; and unit Reynolds number, Reim =
30 x 106 m~ 1 . The undisturbed boundary-layer thickness was
8U = 5.4 mm, and the confinement level was djh = 0.32.
The general characteristics of shock train interactions are dis-
cussed by Carroll and Button.3 Several general features of
the Mach 1.61 normal shock train are apparent in Fig. 1. The
first shock is bifurcated while the following secondary shocks
are not. The region near the boundary-layer edge remains
supersonic throughout the interaction, while the core flow
goes subsonic following each shock in the system. A slip line
is generated at the bifurcation point of the first shock and
extends downstream through the trailing shocks. A large in-
crease in the boundary-layer thickness occurs under the first
shock. Each successive shock in the system is weaker, and
the spacing between successive shocks decreases through the
interaction.

Experimental data from upstream of the interaction were
used for the incoming computational boundary condition. The
computation was initialized by specifying the static pressure
at the exit of the computational domain. One-dimensional
normal shock relations were then used to obtain an approx-
imate subsonic exit plane Mach number, and adiabatic rela-
tions were used to obtain the corresponding exit plane static
temperature. The transverse exit plane velocity was set to
zero and the streamwise exit plane velocity was extracted from
the exit Mach number. The distributions of the turbulence
quantities were assumed to be equal to the inlet values. The
values of all flow properties between the inlet and exit planes
were obtained from a linear interpolation, in the computa-
tional domain, between the inlet and exit.

The computational grids used for the Wilcox-Rubesin and
the Baldwin-Lomax cases are given in Table 1. Taking ad-
vantage of the symmetry in the problem, only the upper half

Table 1

Streamwise domain
Streamwise grid

points
Transverse grid

points
First point off wall
Minimum streamwise

spacing

Computational grids

Wilcox-Rubesin
250mm
117

55

y+ = 12.5
kx/8u = 0.185

Baldwin-Lomax
753.8 mm
112

25

y+ = 6.6
A*/SM - 0.360

Fig. 1 Schlieren photograph of the Mach 1.61 normal shock train
with flow from left to right.

of the flow was computed with the symmetry plane located
at the bottom boundary. The grid for the Wilcox-Rubesin
case is more highly resolved than for the Baldwin-Lomax case.
A computation using the Baldwin-Lomax model and the same
grid as the Wilcox-Rubesin case presented here, was reported
by Carroll and Button,10 but produced results inferior to the
Baldwin-Lomax case, due in part to difficulty in maintaining
a fixed shock location with the more highly refined grid.

The computation with the Wilcox-Rubesin turbulence model
was run for a total of 70,000 iterations, which was sufficient
time for a particle traveling at the incoming freestream ve-
locity to traverse the measurement volume 8.7 times. The
computational rate was 4.8 x 10~5 CPU s/grid point/iteration
for a total CPU time of 6 h on a Cray X-MP. The shock train
had a tendency to move downstream within the computational
domain. As discussed below, the exit plane pressure was raised
above the experimentally observed value to try to stabilize
the shock in the duct. The shock location remained fixed for
at least 10,000 iterations in the final converged solution. The
mass flow rate evaluated at each streamwise location was
constant to within ±3% over the computational domain. The
maximum variation occurred in the core flow at the first shock.
A grid refinement study with the Wilcox-Rubesin case was
performed and showed that the solution is essentially grid
independent. But, the shock train was found to move toward
the exit plane as the transverse grid is refined. However, the
flow structure remained essentially unchanged. Further re-
finements in the streamwise direction had little influence. This
behavior indicates that the slope of the pressure rise is highly
dependent on the transverse grid resolution.

The computation with the Baldwin-Lomax model was run
for a total of 172,000 iterations. This large number of itera-
tions for convergence was required due to the much larger
physical streamwise domain in the Baldwin-Lomax case. The
computational rate was 8.6 x 10~6 CPU s/grid point/iteration
for a total CPU time of 1.5 h on a Cray X-MP. The Baldwin-
Lomax case also showed a tendency for the shock system to
move downstream in the duct, but the shock location was
constant in the final converged results.

Mach number contours for the experimental results, the
Wilcox-Rubesin computation and the Baldwin-Lomax com-
putation, are shown in Fig. 2. The results have been reflected
about the centerline to show the entire physical domain. Both
computations failed to properly locate the shock system in
the duct, so the results have been shifted to a common origin
beginning at the wall static pressure rise. The Baldwin-Lomax
results capture three shocks in the system with the first one
bifurcated. However, the Mach number remains supersonic
through the first shock. The bifurcation point in the Baldwin-
Lomax case is closer to the centerline than in the experiments,
possibly contributing to the failure to capture subsonic flow
following the normal portion of the first shock. Insufficient
streamwise grid resolution may also be a contributing factor.
The spacing between the shocks is overpredicted, as is the
downstream extent of the interaction. The Wilcox-Rubesin
case does a better job of predicting the shock train structure.
This computation captures the first, second, and third shocks
in the system. The later shocks in the system are very weak.
The spacing between shocks also matches the experiments
well. Similar to the Baldwin-Lomax case, the Wilcox-Rubesin
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Experimental Measurements Experimental Measurements

Fig. 2 Mach number contour plots M shifted for common initial
pressure rise; plot range is 0.4-1.5 in increments of 0.1.

Fig. 3 Centerline Mach number distribution, shifted for common
initial pressure rise. The I, II, and III denote the locations of the first,
second, and third shocks, respectively.

computation locates the bifurcation points too close to the
centerline. The centerline Mach number distributions are shown
in Fig. 3, again shifted such that the initial wall static pressure
rise coincides with the experiments. This figure emphasizes
that the Wilcox-Rubesin computation does a much better job
of predicting both the strength of successive shocks in the
system, the magnitude of the Mach number through each
shock, and the location of these shocks. The Baldwin-Lomax
case captured the overall features of the shock train, but failed
to give close quantitative agreement with the data.

Transverse velocity contour plots are presented in Fig. 4.
Carroll and Button8 discuss the significance of transverse ve-
locity in the flow reacceleration process. The slightly oblique
nature of the core part of the leading normal shock causes
the transverse velocity immediately downstream of the first
shock to be directed toward the centerline, forming an aero-
dynamic nozzle. In the near wall region, the flow under the
bifurcation first turns away from the wall, then turns back
toward the wall. This causes an expansion fan to form in the
supersonic flow at the boundary-layer edge, which accelerates
the flow in this region. Similar turning processes occur after
each subsequent shock in the system. The laser Doppler ve-
locimetry (LDV) measurements were concentrated in the re-
gions between the first and second and between the second
and third shocks. The LDV measurement resolution for shocks
further downstream in the train is very coarse. As a result,
the variation in the transverse velocity in the later stages of
the shock train is not resolved in the experiments. The com-
puted results with the Wilcox-Rubesin model appear to ad-
equately predict the transverse velocity behavior, and may
even overpredict the magnitude of the variations in transverse
velocity through the trailing shocks. The Baldwin-Lomax

Fig. 4 Transverse velocity contour plots v/Uue shifted for common
initial pressure rise; plot range is — 0.09 to 0.09 in increments of 0.015,
peak values under first shock are labeled.

Experimental Measurements____________

Fig. 5 Turbulence kinetic energy contour plots k/(Uue)2 x 103, shifted
for common initial pressure rise; plot range is 0.0-16.0 in increments
of 2.0.

computation also captures the general features of the trans-
verse velocity distribution, but overpredicts the magnitude of
the transverse velocity in the trailing shocks by roughly a
factor of six.

Contour plots of turbulence kinetic energy are given in Fig.
5 for the experiments and the Wilcox-Rubesin computation.
The Baldwin-Lomax model does not compute this quantity.
The freestream turbulence level is nearly zero in both the
experiments and computations. A large increase in turbulence
kinetic energy occurs at the foot of the first shock, followed
downstream by a gradual diffusion in the transverse direction.
Good agreement between the computation and the general
features of the experiments is observed. However, the com-
putations overpredict the rate of diffusion of turbulence ki-
netic energy into the core flow and also predict a larger region
of elevated turbulence kinetic energy at the foot of the shock
than is found experimentally. Peak values of nondimension-
alized turbulence kinetic energy at each streamwise location
are plotted in Fig. 6. Again, the computed results are shifted
such that the initial pressure rise coincides with the experi-
ments. The maximum computed value of k/(Uue)2 (Uue is the
incoming freestream velocity) occurs slightly downstream of
the experimentally determined location, although the mag-
nitude of the computed increase agrees very well with the
experimental results. In the later part of the shock train, and
in the recovering region downstream, the computation tends
to overpredict the level of turbulence kinetic energy. How-
ever, it does capture the general trends in this recovery region.

The shifted wall static pressure distributions are shown in
Fig. 7. The Wilcox-Rubesin computation shows a more rapid
pressure rise than is actually present while the Baldwin-Lomax
results have an initially steep pressure rise, then a more grad-
ual downstream pressure increase. The exit pressure imposed
in the Wilcox-Rubesin computations was higher than in the
experiments. This was done in an effort to properly locate
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Peak Values of Turbulence
Kinetic Energy

Experiment
Wilcox-Rubesin

10 15 20
(x - xu) / 8U

25 30 35

Fig. 6 Distribution of the peak values of turbulence kinetic energy
at each streamwise location, shifted for common initial pressure rise.
The I, II, and III denote the locations of the first, second, and third
shocks, respectively.

2.5

2.0
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Experiment
Baldwin-Lomax
Wilcox-Rubesin

10 15 20
(x - xu) / 8U

25 30 35

Fig. 7 Wall static pressure distribution, shifted for common initial
pressure rise. The I, II, and III denote the locations of the first, second,
and third shocks, respectively.

0.0020

0.0015

0.0010

0.0005 '
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-0.0005
10 15 20

(x • xu) / 8U

Fig. 8 Skin friction coefficient distribution, shifted for common initial
pressure rise. The I, II, and III denote the locations of the first, second,
and third shocks, respectively.

the shock train in the duct. The experimental exit pressure
level was used for the Baldwin-Lomax case. The major con-
clusion from this figure is that neither the Wilcox-Rubesin
nor the Baldwin-Lomax computations properly predict the
magnitude of the wall static pressure rise, even though they
do predict the general shape of the pressure rise. Side wall
boundary layers are present in the experiment, but were not
modeled in the two-dimensional computations. This is con-
sistent with the overprediction of the pressure in the Wilcox-
Rubesin computation, but fails to explain the differences in
the Baldwin-Lomax computation.

Distributions of the skin friction coefficient are shown in
Fig. 8. The experimental values of Cf were obtained from a
wall-wake curve fit to the velocity data. Boundary-layer sep-
aration was not observed in the experiments. The high con-
finement levels delay separation until higher Mach numbers
than one would expect based on unconfined shock wave/

boundary-layer interaction results. Both computations predict
boundary-layer separation, with the Baldwin-Lomax com-
putation predicting the largest separated region. Both com-
putations also predict that the minimum skin friction level
under the first shock occurs under the bifurcation, while the
experiments indicate that it occurs just after the trailing leg
of the bifurcation. Close quantitative agreement with the ex-
perimental skin friction distribution is not obtained with either
turbulence model, and the Baldwin-Lomax calculation does
not capture reattachment accurately. It shows erratic behavior
over an extended region before final reattachment. The best
that can be said is that the computations predict the general
trends for the skin friction coefficient and that the Wilcox-
Rubesin results come closer to predicting the true level of
boundary-layer separation. As noted above, the confining
effect of the duct walls tends to decrease the tendency toward
separation. The experiments were run in a duct with an aspect
ratio (depth-to-height) of 2.4. Even though the experiments
were judged to be two-dimensional in the middle 50% of the
span wise direction, the experimental side wall boundary lay-
ers may have imposed a slightly higher confinement level than
was present in the strictly two-dimensional computations. This
may help explain the excessive separation levels in the com-
putations.

Conclusion
The first reported computations that examine in detail the

mechanisms in a multiple normal shock wave/turbulent bound-
ary-layer interaction (or shock train) have been presented.
The effectiveness of the Baldwin-Lomax algebraic turbulence
model and the Wilcox-Rubesin two-equation turbulence model
has been evaluated for this flow. The Baldwin-Lomax model
failed to accurately capture the shock train flow and showed
a higher sensitivity than the Wilcox-Rubesin model to the
computational grid. The Wilcox-Rubesin model did a better
job of predicting the shock train phenomena and the level of
flow separation. It also tended to locate the shock more ac-
curately in the duct. However, the Wilcox-Rubesin model
requires significantly more computer resources and is prone
to numerical instabilities. The stability problems might be
overcome by using a more advanced flow solver, for example
a total variation diminishing-type scheme, to mitigate the
tendency of the turbulence model equations to go unbounded
near the shocks.
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